pharaglow package

pharaglow.extract module

extract.py: Extract pumping-like traces from kymographs etc..

pharaglow.extract.alignKymos(ar)[source]

Align a kymograph by largest correlation.

Parameters

ar (numpy,array) – 2d array with each row a kymograph line

Returns

array with each row shifted for optimal correlation with the first row.

Return type

numpy.array

pharaglow.extract.extractKymo(df, key)[source]

extract the difference of the kymo.

Parameters
  • df (pandas.DataFrame) – a pharaglow results dataframe

  • key (str) – a column name in dataframe e.g. ‘kymo’

Returns

the diff between adjacent kymograph rows

Return type

numpy.array

pharaglow.extract.find_pumps(metric, heights=array([0.01, 0.11, 0.21, 0.31, 0.41, 0.51, 0.61, 0.71, 0.81, 0.91, 1.01, 1.11, 1.21, 1.31, 1.41, 1.51, 1.61, 1.71, 1.81, 1.91, 2.01, 2.11, 2.21, 2.31, 2.41, 2.51, 2.61, 2.71, 2.81, 2.91, 3.01, 3.11, 3.21, 3.31, 3.41, 3.51, 3.61, 3.71, 3.81, 3.91, 4.01, 4.11, 4.21, 4.31, 4.41, 4.51, 4.61, 4.71, 4.81, 4.91]), min_distance=5, sensitivity=0.99, **kwargs)[source]

peak detection method finding the maximum number of peaks while allowing fewer than a sensitivity fraction of peaks that are closer than a min_distance.

Parameters
  • metric (numpy.array) – input signal with peaks

  • heights (list, optional) – peak prominence values to test. Defaults to np.arange(0.01, 5, 0.1).

  • min_distance (int, optional) – distance peaks should be apart. Defaults to 5.

  • sensitivity (float, optional) – how many peaks can violate min_distance. Defaults to 0.99.

Returns

peak indices numpy.array: peak number and fraction of valid peaks for all heights numpy.array: mean and standard deviation fraction of valid peaks for all heights in a random occurance

Return type

list

pharaglow.extract.hampel(vals_orig, k=7, t0=3)[source]

Implements a Hampel filter (code from E. Osorio, Stackoverflow).

Parameters
  • vals_orig (list, numpy.array) – series of values to filter

  • k (int, optional) – window size to each side of the sample eg. 7 is 3 left and 3 right of the sample value. Defaults to 7.

  • t0 (int or float, optional) – how many sigma away is an outlier. Defaults to 3.

pharaglow.extract.preprocess(p, w_bg, w_sm, win_type_bg='hamming', win_type_sm='boxcar')[source]

preprocess a trace with rolling window brackground subtraction.

Parameters
  • p (numpy.array) – input signal or time series

  • w_bg (int) – background window size

  • w_sm (int) – smoothing window size

  • win_type_bg (str, optional) – background window type. Defaults to ‘hamming’.

  • win_type_sm (str, optional) – smoothing window type. Defaults to ‘boxcar’.

Returns

background subtracted and smoothed signal

Return type

numpy.array

pharaglow.extract.pumps(data, key='Straightened')[source]

Pumping metric based on the dorsal-vetral signal variation.

Parameters

data (pandas.DataFrame) – dataframe with a column containing straightened images of pharyxes

Returns

signal for all images

Return type

numpy.array

pharaglow.features module

features.py: image analysis of pharynx. Uses skimage to provide image functionality.

pharaglow.features.centerline(poptX, poptY, xs)[source]

create a centerline from fitted function.

Parameters
  • poptX (array) – optimal fit parameters describing pharynx centerline.

  • poptY (array) – optimal fit parameters describing pharynx centerline.

  • xs (np.array) – array of coordinates to create centerline from .feature._pharynxFunc(x, *p, deriv = 0)

Returns

(N,2) a centerline spanning the length of the pharynx. Same length as xs.

Return type

numpy.array

pharaglow.features.cropcenterline(poptX, poptY, contour)[source]

Define start and end point of centerline by crossing of contour.

Parameters
  • poptX (array) – optimal fit parameters describing pharynx centerline.

  • poptY (array) – optimal fit parameters describing pharynx centerline.

  • contour (numpy.array) – (N,2) array of points describing the pharynx outline.

Returns

start and end coordinate to apply to .features._pharynxFunc(x) to create a centerline

Return type

float, float

spanning the length of the pharynx.

pharaglow.features.extractPump(straightIm)[source]

Use a pumping metric to get measure of pharyngeal contractions. It calculates the inverse maximum standard deviation along the Dorsoventral axis.

Parameters

straightIm (numpy.array) – straightened image of pharynx

Returns

pharyngeal metric

Return type

float

pharaglow.features.find_lawn(image, smooth=1, area_holes=15000, area_spots=50000)[source]

binarize the image of the bacterial lawn.

Parameters
  • image (np.array or pims.Frame) – image of a bacterial lawn

  • smooth (int, optional) – apply gaussian filter of size smooth px. Defaults to 1.

  • area_holes (int, optional) – remove small holes in binary image. Defaults to 15000.

  • area_spots (int, optional) – remove small objects in binary image. Defaults to 50000.

Returns

binarized image

Return type

np.array

pharaglow.features.fitSkeleton(ptsX, ptsY, func=<function pharynxFunc>)[source]

Fit a (cubic) polynomial spline to the centerline. The input should be sorted skeleton coordinates.

Parameters
  • ptsX (numpy.array or list) – sorted x coordinates

  • ptsY (numpy.array or list) – sorted y coordinates

  • func (function, optional) – function to fit. Defaults to pharynxFunc.

Returns

optimal fit parameters of pharynxFunc

Return type

array

pharaglow.features.gradientPharynx(im)[source]

Apply a local gradient to the image.

Parameters

im (numpy.array or pims.Frame) – image of curved object

Returns

gradient of image

Return type

numpy.array

pharaglow.features.headLocationLawn(cl, slices, binLawn)[source]

Use the first coordinate of the centerline to check if the worm touches the lawn.

Parameters
  • cl (numpy,array or list) – (N,2) centerline spanning the length of the pharynx.

  • slice (tuple) – (yo, xo) offset between cl and full image

  • binLawn ([type]) – image of a lawn or other background e.g. created by .features.findLawn

Returns

image intensity at first point of cl (should be nose tip)

Return type

float

pharaglow.features.inside(x, y, binLawn)[source]

Extract intensity of an image at coordinate (x,y).

Parameters
  • x (float) – x location in px

  • y (float) – y location in px

  • binLawn ([type]) – image of a lawn or other background e.g. created by .features.findLawn

Returns

image intensity at binLawn(y,x)

Return type

float

pharaglow.features.intensityAlongCenterline(im, cl, **kwargs)[source]

Create an intensity kymograph along the centerline.

Parameters
  • im (numpy.array) – image of a pharynx

  • cl (numpy.array or list) – (n,2) list of centerline coordinates in image space.

  • kwargs**kwargs are passed skimage.measure.profile_line.

Returns

array of (?,) length. Length is determined by pathlength of centerline.

Return type

numpy.array

pharaglow.features.morphologicalPharynxContour(mask, scale=4, **kwargs)[source]
Uses morphological contour finding on a mask image to get a nice outline.

We will upsample the image to get sub-pixel outlines. **kwargs are handed to morphological_chan_vese.

Parameters
  • mask (numpy.array) – binary mask of pharynx.

  • scale (int, optional) – Scale to upsample the image by. Defaults to 4.

Returns

coordinates of the contour as array of (N,2) coordinates.

Return type

numpy.array

pharaglow.features.normalVecCl(poptX, poptY, xs)[source]

Create vectors normal to the centerline by using the derivative of the function describing the midline.

Parameters
  • poptX (array) – optimal fit parameters describing pharynx centerline.

  • poptY (array) – optimal fit parameters describing pharynx centerline.

  • xs (np.array) – array of coordinates to create centerline from .feature._pharynxFunc(x, *p, deriv = 0)

Returns

: (N,2) array of unit vectors orthogonal to centerline. Same length as xs.

Return type

numpy.array

pharaglow.features.pharynxFunc(x, *p, deriv=0)[source]

Defines a cubic polynomial helper function.

Parameters
  • x (numpy.array or list) – list of coordinates to evaluate function on

  • deriv (int, optional) – return the polynomial or its first derivative Defaults to 0. {0,1}

Returns

polynomial evaluated at x

Return type

numpy.array or list

pharaglow.features.scalarWidth(widths)[source]

calculate the width of the pharynx along the centerline.

Parameters

widths (numpy.array) – (N, 2,2) array of start and end points of lines spanning the pharynx orthogonal to the midline.

Returns

(N,1) array of scalar widtha.

Return type

numpy.array

pharaglow.features.skeletonPharynx(mask)[source]

Use skeletonization to obatain midline of pharynx.

Parameters

mask (numpy.array) – binary mask of the pharynx

Returns

skeleton of mask

Return type

numpy.array

pharaglow.features.sortSkeleton(skeleton)[source]

This function has been made lazy. When passed a Slicerator, it will return a Pipeline of the results. When passed any other objects, its behavior is unchanged.

Use hierarchical clustering with optimal ordering to get the best path through the skeleton points.

Args:

skeleton (numpy.array): skeletonized image of an object

Returns:

list: list of coordinates ordered by distance

pharaglow.features.straightenPharynx(im, xstart, xend, poptX, poptY, width, nPts=100)[source]

Based on a centerline, straighten the animal.

Parameters
  • im (numpy.array or pims.Frame) – image of curved object

  • xstart (float) – start coordinate to apply to .features._pharynxFunc(x) to create a centerline

  • xend (float) – end coordinate to apply to .features._pharynxFunc(x) to create a centerline

  • poptX (array) – optimal fit parameters describing pharynx centerline.

  • poptY (array) – optimal fit parameters describing pharynx centerline.

  • width (int) – how many points to sample orthogonal of the centerline

  • nPts (int, optional) – how many points to sample along the centerline. Defaults to 100.

Returns

(nPts, width) array of image intensity

Return type

numpy.array

pharaglow.features.thresholdPharynx(img)[source]

This function has been made lazy. When passed a Slicerator, it will return a Pipeline of the results. When passed any other objects, its behavior is unchanged.

Use Yen threshold to obtain mask of pharynx.

Args:

im (numpy.array or pims.Frame): image

Returns:

np.array: binary image with only the largest object

pharaglow.features.widthPharynx(cl, contour, dCl)[source]
Use vector interesections to get width of object.

We are looking for contour points that have the same(or very similar) angle relative to the centerline point as the normal vectors.

Parameters
  • cl ([type]) – cl (N,2) array describing the centerline

  • contour ([type]) – (M,2) array describing the contour

  • dCl ([type]) – (N,2) array describing the normal vectors on the centerline (created by calling .features.normalVecCl(poptX, poptY, xs))

Returns

(N,2) widths of the contour at each centerline point.

Return type

numpy.array

pharaglow.io module

io.py: loading for pharaglow feature files.

pharaglow.io.load(fname, image_depth=8, maxcols=10000, prefix='im', **kwargs)[source]
load a pharglow features, trajectories or results file.

We expect columns containing the string ‘im’ to be image pixels which will convert to uint8.

Parameters
  • fname (str) – filename of the .json file to load.

  • image_depth (int, optional) – bit depth of the images. Defaults to 8.

  • maxcols (int, optional) – maximal number of expected columns. Defaults to 10000.

  • prefix (str, optional) – prefix to add to the column. Defaults to “im”.

Returns

a pharaglow file as dataframe

Return type

pandas.DataFrame

pharaglow.io.log_setup(name, level, fname)[source]

This function will setup a logger with the name and level you pass as input. Levels are 10 (debug), 20 (info), 30 (warning), 40 (error), 50 (critical).

Parameters
  • name (str) – name of the logger object

  • level (int) – logging level {10,20,30,40,50}

  • fname (str) – filename for writing the log messages

Returns

a logger

Return type

logging.Logger

pharaglow.run module

run.py: run pharaglow analysis by inplace modifying pandas dataframes.

pharaglow.run.parallel_pharaglow_run(args, **kwargs)[source]

Define a worker function for parallelization.

Parameters

args – arguments for .features.runPharaglowOnImage()

Returns

hands over output from .features.runPharaglowOnImage()

Return type

pandas.DataFrame

pharaglow.run.pharynxorientation(df)[source]

Get all images into the same orientation by comparing to a sample image.

Parameters

df (pandas.DataFrame) – a pharaglow dataframe after running .run.runPharaglowOnImage()

Returns

dataFrame with flipped columns where neccessary

Return type

pandas.DataFrame

pharaglow.run.runPharaglowCL(mask, ptsX, ptsY, length, **kwargs)[source]

Fit the centerline points and detect object morphology.

Parameters
  • mask (list) – binary image, unraveled

  • ptsX (list) – coordinates of centerline along X

  • ptsY (list) – coordinates of centerline along Y

  • length (list) – length of one axis of the image

Returns

poptX - optimal fit parameters of .features.pharynxFunc list: poptY - optimal fit parameters of .features.pharynxFunc float: xstart -start coordinate to apply to .features._pharynxFunc(x) to create a centerline float: xend - end coordinate to apply to .features._pharynxFunc(x) to create a centerline list: cl - (n,2) list of centerline coordinates in image space. list: dCl - (n,2) array of unit vectors orthogonal to centerline. Same length as cl. list: widths - (n,2) widths of the contour at each centerline point. list: contour- (m,2) coordinates along the contour of the object

Return type

list

pharaglow.run.runPharaglowImg(im, xstart, xend, poptX, poptY, width, npts)[source]

Obtain the straightened version and gradient of the input image.

Parameters
  • im (numpy.array or pims.Frame) – image of curved object

  • xstart (float) – start coordinate to apply to .features._pharynxFunc(x) to create a centerline

  • xend (float) – end coordinate to apply to .features._pharynxFunc(x) to create a centerline

  • poptX (array) – optimal fit parameters describing pharynx centerline.

  • poptY (array) – optimal fit parameters describing pharynx centerline.

  • width (int) – how many points to sample orthogonal of the centerline

  • nPts (int, optional) – how many points to sample along the centerline. Defaults to 100.

Returns

local derivative of image numpy.array: (nPts, width) array of image intensity straightened by centerline

Return type

numpy.array

pharaglow.run.runPharaglowKymo(im, cl, widths, **kwargs)[source]

Use the centerline to extract intensity along this line from an image.

Parameters
  • im (numpy.array) – image of a pharynx

  • cl (numpy.array or list) – (n,2) list of centerline coordinates in image space.

  • kwargs**kwargs are passed skimage.measure.profile_line.

Returns

array of (?,) length. Length is determined by pathlength of centerline.

Return type

numpy.array

pharaglow.run.runPharaglowOnImage(image, framenumber, params, **kwargs)[source]

Run pharaglow-specific image analysis of a pharynx on a single image.

Parameters
  • image (numpy.array or pims.Frame) – input image

  • framenumber (int) – frame number to indicate in the resulting

  • analyzed. (dataframe which image is being) –

  • arams (dict) – parameter dictionary containing image analysis parameters.

Returns

collection of data created by pharaglow for this image.

Return type

pandas.DataFrame

pharaglow.run.runPharaglowSkel(im)[source]

Create a centerline of the object in the image by binarizing, skeletonizing and sorting centerline points.

Parameters

im (numpy.array or pims.Frame) – image

Returns

binary of image, unraveled list: coordinates of centerline along X list: coordinates of centerline along Y

Return type

list

pharaglow.tracking module

tracking.py: Detection of worms and trackpy-based worm tracking.

pharaglow.tracking.calculateMask(frames, bgWindow=30, thresholdWindow=30, subtract=False, smooth=0, tfactor=1, **kwargs)[source]

standard median stack-projection to obtain a background image followd by thresholding and filtering of small objects to get a clean mask.

Parameters
  • frames (numpy.array or pims.ImageSequence) – image stack with input images

  • bgWindow (int) – subsample frames for background creation. Defaults to 30.

  • thresholdWindow (int, optional) – subsample frames to calculate the threshold. Use larger values if the objects are dense. Defaults to 30.

  • subtract (bool, optional) – calculate and subtract a median-background. Defaults to False.

  • smooth (int, optional) – size of gaussian filter for image smoothing. Defaults to 0.

  • tfactor (int, optional) – fudge factor to correct threshold. Discouraged. Defaults to 1.

Returns

masked (binary) image array

Return type

numpy.array

pharaglow.tracking.cropImagesAroundCMS(img, x, y, lengthX, lengthY, size, refine=False)[source]

Using the interpolated center of mass coordindates (x,y), fill in missing images. img is a full size frame.

Parameters
  • img (numpy.array) – original image

  • x (float) – x-coordinate

  • y (float) – y-coordinate

  • lengthX (int) – length of resulting image

  • lengthY (int) – length of resulting image

  • size (float) – expected minimal size for a relevant object

  • refine (bool, optional) – Use filtering to separate potentially colliding objects. Defaults to False.

Returns

image unraveled as 1d list tuple: bounding box int: length of first image axis int: length of second image axis

Return type

list

pharaglow.tracking.extractImage(img, mask, length, cmsLocal)[source]

extracts a square image of an object centered around center of mass coordinates with size (length, length). Mask ensures that only one object is visible if two are in the same region. img is the bounding box region of the object.

Parameters
  • img (numpy.array or pims.Frame) – larger image

  • mask (numpy.array) – binary mask of the same size as img

  • length (int) – length of resulting image

  • cmsLocal (float, float) – center point

Returns

square cutout of (length,length) will be returned

Return type

numpy.array

pharaglow.tracking.extractImagePad(img, bbox, pad, mask=None)[source]

get a larger than bounding box image by padding around the detected object.

Parameters
  • img (numpy.array) – input image

  • bbox (tuple) – bounding box which lies in img in format (ymin, xmin, ymax, xmax)

  • pad (int) – number of pixels to pad around each size. reslting image will be larger by 2*pad on each side.

  • mask (numpy.array, optional) – binary mask of size img. Defaults to None.

Returns

padded image slice: location/bbox of padded image in original image

Return type

numpy.array

pharaglow.tracking.fillMissingImages(imgs, frame, x, y, lengthX, lengthY, size, refine=False)[source]

Run this on a dataframe to interpolate images from previously missing, now interpolated coordinates.

Parameters
  • img (numpy.array) – original image

  • x (float) – x-coordinate

  • y (float) – y-coordinate

  • lengthX (int) – length of resulting image

  • lengthY (int) – length of resulting image

  • size (float) – expected minimal size for a relevant object

  • refine (bool, optional) – Use filtering to separate potentially colliding objects. Defaults to False.

Returns

image unraveled as 1d list int: ymin of bounding box int: xmin of bounding box int: ymax of bounding box int: xmax of bounding box int: length of first image axis int: length of second image axis

Return type

list

pharaglow.tracking.getThreshold(img)[source]

This function has been made lazy. When passed a Slicerator, it will return a Pipeline of the results. When passed any other objects, its behavior is unchanged.

“return a global threshold value for an image using yen’s method.
Returns:

float: theshold value

pharaglow.tracking.interpolateTrajectories(traj, columns=None)[source]

given a dataframe with a trajectory, interpolate missing frames. The interpolate function ignores non-pandas types, so some columns will not be interpolated.

Parameters
  • traj (pandas.DataFrame) – pandas dataframe containing at minimum the columns ‘frame’ and the columns given in colums.

  • columns (list(str), optional) – list of columns to interpolate.

  • interpolated. (Defaults to None, which means all columns are attempted to be) –

Returns

dataframe with interpolated trajectories

Return type

pandas.DataFrame

pharaglow.tracking.interpolate_helper(rawframes, ims, tmp, param, columns=['x', 'y', 'shapeX', 'shapeY', 'particle'])[source]

wrapper to make the code more readable. This interpolates all missing images in a trajectory. check if currently the image is all zeros - then we insert an small image from the original movie around the interpolated coordinates.

Parameters
  • rawframes (pims.ImageSequence) – sequence of images

  • ims (numpy.array) – stack of small images around detected objects corresponding to rows in tmp

  • tmp (pandas.DataFrame) – pandas dataframe with an onject and its properties per row

  • param (dict) – dictionary of image analysis parameters, see example file AnalysisParameters_1x.json

  • columns (list, optional) – columns to interpolate. Defaults to [‘x’, ‘y’, ‘shapeX’, ‘shapeY’, ‘particle’].

Returns

interpolated version of tmp with missing values interpolated numpy.array: array of images with interpolated images inserted at the appropriate indices

Return type

pandas.DataFrame

pharaglow.tracking.linkParticles(df, searchRange, minimalDuration, **kwargs)[source]

Link detected particles into trajectories. **kwargs can be passed to the trackpy function link_df to modify tracking behavior.

Parameters
  • df (pandas.DataFrame) – pandas dataframe that contains at least the columns ‘frame’ and ‘x’, ‘y’.

  • searchRange (float) – how far particles can move in one frame

  • minimalDuration (int) – minimal duration of a track in frames

Returns

inplace modified dataframe with an added column called ‘particles’ which labels the objects belonging to one trajectory.

Return type

pandas.DataFrame

pharaglow.tracking.objectDetection(mask, img, frame, params)[source]
label a binary image and extract a region of interest around each labelled object,

as well as collect properties of the object in a DataFrame.

Parameters
  • mask (numpy.array) – binary image

  • img (numpy.array) – intensity image with same shape as mask

  • frame (int) – a number to indicate a time stamp, which will populate the column ‘frame’

  • params (dict) – parameter dictionary containing image analysis parameters.

Returns

dataframe with information for each image, list of corresponding images.

Return type

pandas.Dataframe, list

pharaglow.tracking.parallelWorker(args, **kwargs)[source]

helper wrapper to run object detection with multiprocessing.

Parameters

args – arguments for .tracking.objectDetection

Returns

dataframe with information for each image list: list of corresponding images.

Return type

pandas.DataFrame

pharaglow.tracking.parallel_imageanalysis(frames, masks, param, framenumbers=None, parallelWorker=<function parallelWorker>, nWorkers=5, output=None)[source]

use multiptocessing to speed up image analysis. This is inspired by the trackpy.batch function.

frames: numpy.array or other iterable of images masks: the binary of the frames, same length param: parameters given to all jobs

output{None, trackpy.PandasHDFStore, SomeCustomClass}

If None, return all results as one big DataFrame. Otherwise, pass results from each frame, one at a time, to the put() method of whatever class is specified here.

pharaglow.tracking.preprocess(img, threshold=None, smooth=0, dilate=False)[source]

This function has been made lazy. When passed a Slicerator, it will return a Pipeline of the results. When passed any other objects, its behavior is unchanged.

Apply image processing functions to return a binary image.

Args:

img (numpy.array or pims.Frame): input image smooth (int): apply a gaussian filter to img with width=smooth threshold (float): threshold value to apply after smoothing (default: None) dilate (int): apply a binary dilation n = dilate times (default = False)

Returns:

numpy.array: binary (masked) image

pharaglow.tracking.refineWatershed(img, min_size, filter_sizes=[3, 4, 5])[source]

This function has been made lazy. When passed a Slicerator, it will return a Pipeline of the results. When passed any other objects, its behavior is unchanged.

“Refine segmentation using thresholding with different filtered images.

Favors detection of two objects. Args:

img (numpy.array or pims.Frame): input image min_size (int, float): minimal size of objects to retain as labels filter_sizes (list, optional): filter sizes to try until objects are separated. Defaults to [3,4,5].

Returns:

numpy.array : labelled image

pharaglow.tracking.subtractBG(img, bg)[source]

This function has been made lazy. When passed a Slicerator, it will return a Pipeline of the results. When passed any other objects, its behavior is unchanged.

Subtract a background from the image.

Args:

img (numpy.array or pims.Frame): input image bg (numpy.array or pims.Frame): second image with background

Returns:

numpy.array: background subtracted image

pharaglow.util module

util.py: useful general functions like filters and peak detection.

pharaglow.util.get_im(df, colnames, lengthX)[source]

deprecated

pharaglow.util.pad_images(im, shape, size, reshape=True, depth='uint8')[source]

pad image to desired size.

Parameters
  • im (list) – a linearized version of an image

  • shape (int) – shape of second axis of image.

  • size (int) – pad image to size (size, size)

  • reshape (bool, optional) – reshape image to (-1, shape) before padding. Defaults to True.

  • depth (str, optional) – bit depth of image. Defaults to ‘uint8’.

Returns

padded image of size (size, size)

Return type

numpy.array

pharaglow.util.parallel_analysis(args, param, parallelWorker, framenumbers=None, nWorkers=5, output=None, depth='uint8', **kwargs)[source]

Use multiprocessing to speed up image analysis. This is inspired by the trackpy.batch function.

Parameters
  • args (tuple) – contains iterables eg. (frames, masks) or just frames that will be iterated through.

  • param (dict) – image analysis parameters

  • parallelWorker (func) – a function defining what should be done with args

  • framenumbers (list, optional) – a list of frame numbers corresponding to the frames in args. Defaults to None.

  • nWorkers (int, optional) – Processes to use, if 1 will run without multiprocessing. Defaults to 5.

  • output ([type], optional) – {None, trackpy.PandasHDFStore, SomeCustomClass} a storage class e.g. trackpy.PandasHDFStore. Defaults to None.

  • depth (str, optional) – bit depth of frames. Defaults to ‘uint8’.

Returns

output or (pandas.DataFrame, numpy.array)

pharaglow.util.smooth(x, window_len=11, window='hanning')[source]

smooth the data using a window with requested size.

This method is based on the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are minimized in the begining and end part of the output signal. import warnings input:

x: the input signal window_len: the dimension of the smoothing window; should be an odd integer window: the type of window from ‘flat’, ‘hanning’, ‘hamming’, ‘bartlett’, ‘blackman’

flat window will produce a moving average smoothing.

output:

the smoothed signal

example:

t=linspace(-2,2,0.1) x=sin(t)+randn(len(t))*0.1 y=smooth(x)

see also:

numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve scipy.signal.lfilter

TODO: the window parameter could be the window itself if an array instead of a string NOTE: length(output) != length(input), to correct this: return y[(window_len/2-1):-(window_len/2)] instead of just y.

pharaglow.util.unravelImages(im, lengthX)[source]

Reshape images from linear to square. :param im: an image :type im: list :param lengthX: shape of new image in second axis :type lengthX: int

Returns

image reshaped as (N,lengthX)

Return type

numpy.array