pharaglow package
pharaglow.extract module
extract.py: Extract pumping-like traces from kymographs etc..
- pharaglow.extract.alignKymos(ar)[source]
Align a kymograph by largest correlation.
- Parameters
ar (numpy,array) – 2d array with each row a kymograph line
- Returns
array with each row shifted for optimal correlation with the first row.
- Return type
numpy.array
- pharaglow.extract.extractKymo(df, key)[source]
extract the difference of the kymo.
- Parameters
df (pandas.DataFrame) – a pharaglow results dataframe
key (str) – a column name in dataframe e.g. ‘kymo’
- Returns
the diff between adjacent kymograph rows
- Return type
numpy.array
- pharaglow.extract.find_pumps(metric, heights=array([0.01, 0.11, 0.21, 0.31, 0.41, 0.51, 0.61, 0.71, 0.81, 0.91, 1.01, 1.11, 1.21, 1.31, 1.41, 1.51, 1.61, 1.71, 1.81, 1.91, 2.01, 2.11, 2.21, 2.31, 2.41, 2.51, 2.61, 2.71, 2.81, 2.91, 3.01, 3.11, 3.21, 3.31, 3.41, 3.51, 3.61, 3.71, 3.81, 3.91, 4.01, 4.11, 4.21, 4.31, 4.41, 4.51, 4.61, 4.71, 4.81, 4.91]), min_distance=5, sensitivity=0.99, **kwargs)[source]
peak detection method finding the maximum number of peaks while allowing fewer than a sensitivity fraction of peaks that are closer than a min_distance.
- Parameters
metric (numpy.array) – input signal with peaks
heights (list, optional) – peak prominence values to test. Defaults to np.arange(0.01, 5, 0.1).
min_distance (int, optional) – distance peaks should be apart. Defaults to 5.
sensitivity (float, optional) – how many peaks can violate min_distance. Defaults to 0.99.
- Returns
peak indices numpy.array: peak number and fraction of valid peaks for all heights numpy.array: mean and standard deviation fraction of valid peaks for all heights in a random occurance
- Return type
list
- pharaglow.extract.hampel(vals_orig, k=7, t0=3)[source]
Implements a Hampel filter (code from E. Osorio, Stackoverflow).
- Parameters
vals_orig (list, numpy.array) – series of values to filter
k (int, optional) – window size to each side of the sample eg. 7 is 3 left and 3 right of the sample value. Defaults to 7.
t0 (int or float, optional) – how many sigma away is an outlier. Defaults to 3.
- pharaglow.extract.preprocess(p, w_bg, w_sm, win_type_bg='hamming', win_type_sm='boxcar')[source]
preprocess a trace with rolling window brackground subtraction.
- Parameters
p (numpy.array) – input signal or time series
w_bg (int) – background window size
w_sm (int) – smoothing window size
win_type_bg (str, optional) – background window type. Defaults to ‘hamming’.
win_type_sm (str, optional) – smoothing window type. Defaults to ‘boxcar’.
- Returns
background subtracted and smoothed signal
- Return type
numpy.array
pharaglow.features module
features.py: image analysis of pharynx. Uses skimage to provide image functionality.
- pharaglow.features.centerline(poptX, poptY, xs)[source]
create a centerline from fitted function.
- Parameters
poptX (array) – optimal fit parameters describing pharynx centerline.
poptY (array) – optimal fit parameters describing pharynx centerline.
xs (np.array) – array of coordinates to create centerline from .feature._pharynxFunc(x, *p, deriv = 0)
- Returns
(N,2) a centerline spanning the length of the pharynx. Same length as xs.
- Return type
numpy.array
- pharaglow.features.cropcenterline(poptX, poptY, contour)[source]
Define start and end point of centerline by crossing of contour.
- Parameters
poptX (array) – optimal fit parameters describing pharynx centerline.
poptY (array) – optimal fit parameters describing pharynx centerline.
contour (numpy.array) – (N,2) array of points describing the pharynx outline.
- Returns
start and end coordinate to apply to .features._pharynxFunc(x) to create a centerline
- Return type
float, float
spanning the length of the pharynx.
- pharaglow.features.extractPump(straightIm)[source]
Use a pumping metric to get measure of pharyngeal contractions. It calculates the inverse maximum standard deviation along the Dorsoventral axis.
- Parameters
straightIm (numpy.array) – straightened image of pharynx
- Returns
pharyngeal metric
- Return type
float
- pharaglow.features.find_lawn(image, smooth=1, area_holes=15000, area_spots=50000)[source]
binarize the image of the bacterial lawn.
- Parameters
image (np.array or pims.Frame) – image of a bacterial lawn
smooth (int, optional) – apply gaussian filter of size smooth px. Defaults to 1.
area_holes (int, optional) – remove small holes in binary image. Defaults to 15000.
area_spots (int, optional) – remove small objects in binary image. Defaults to 50000.
- Returns
binarized image
- Return type
np.array
- pharaglow.features.fitSkeleton(ptsX, ptsY, func=<function pharynxFunc>)[source]
Fit a (cubic) polynomial spline to the centerline. The input should be sorted skeleton coordinates.
- Parameters
ptsX (numpy.array or list) – sorted x coordinates
ptsY (numpy.array or list) – sorted y coordinates
func (function, optional) – function to fit. Defaults to pharynxFunc.
- Returns
optimal fit parameters of pharynxFunc
- Return type
array
- pharaglow.features.gradientPharynx(im)[source]
Apply a local gradient to the image.
- Parameters
im (numpy.array or pims.Frame) – image of curved object
- Returns
gradient of image
- Return type
numpy.array
- pharaglow.features.headLocationLawn(cl, slices, binLawn)[source]
Use the first coordinate of the centerline to check if the worm touches the lawn.
- Parameters
cl (numpy,array or list) – (N,2) centerline spanning the length of the pharynx.
slice (tuple) – (yo, xo) offset between cl and full image
binLawn ([type]) – image of a lawn or other background e.g. created by .features.findLawn
- Returns
image intensity at first point of cl (should be nose tip)
- Return type
float
- pharaglow.features.inside(x, y, binLawn)[source]
Extract intensity of an image at coordinate (x,y).
- Parameters
x (float) – x location in px
y (float) – y location in px
binLawn ([type]) – image of a lawn or other background e.g. created by .features.findLawn
- Returns
image intensity at binLawn(y,x)
- Return type
float
- pharaglow.features.intensityAlongCenterline(im, cl, **kwargs)[source]
Create an intensity kymograph along the centerline.
- Parameters
im (numpy.array) – image of a pharynx
cl (numpy.array or list) – (n,2) list of centerline coordinates in image space.
kwargs – **kwargs are passed skimage.measure.profile_line.
- Returns
array of (?,) length. Length is determined by pathlength of centerline.
- Return type
numpy.array
- pharaglow.features.morphologicalPharynxContour(mask, scale=4, **kwargs)[source]
- Uses morphological contour finding on a mask image to get a nice outline.
We will upsample the image to get sub-pixel outlines. **kwargs are handed to morphological_chan_vese.
- Parameters
mask (numpy.array) – binary mask of pharynx.
scale (int, optional) – Scale to upsample the image by. Defaults to 4.
- Returns
coordinates of the contour as array of (N,2) coordinates.
- Return type
numpy.array
- pharaglow.features.normalVecCl(poptX, poptY, xs)[source]
Create vectors normal to the centerline by using the derivative of the function describing the midline.
- Parameters
poptX (array) – optimal fit parameters describing pharynx centerline.
poptY (array) – optimal fit parameters describing pharynx centerline.
xs (np.array) – array of coordinates to create centerline from .feature._pharynxFunc(x, *p, deriv = 0)
- Returns
: (N,2) array of unit vectors orthogonal to centerline. Same length as xs.
- Return type
numpy.array
- pharaglow.features.pharynxFunc(x, *p, deriv=0)[source]
Defines a cubic polynomial helper function.
- Parameters
x (numpy.array or list) – list of coordinates to evaluate function on
deriv (int, optional) – return the polynomial or its first derivative Defaults to 0. {0,1}
- Returns
polynomial evaluated at x
- Return type
numpy.array or list
- pharaglow.features.scalarWidth(widths)[source]
calculate the width of the pharynx along the centerline.
- Parameters
widths (numpy.array) – (N, 2,2) array of start and end points of lines spanning the pharynx orthogonal to the midline.
- Returns
(N,1) array of scalar widtha.
- Return type
numpy.array
- pharaglow.features.skeletonPharynx(mask)[source]
Use skeletonization to obatain midline of pharynx.
- Parameters
mask (numpy.array) – binary mask of the pharynx
- Returns
skeleton of mask
- Return type
numpy.array
- pharaglow.features.sortSkeleton(skeleton)[source]
This function has been made lazy. When passed a Slicerator, it will return a Pipeline of the results. When passed any other objects, its behavior is unchanged.
Use hierarchical clustering with optimal ordering to get the best path through the skeleton points.
- Args:
skeleton (numpy.array): skeletonized image of an object
- Returns:
list: list of coordinates ordered by distance
- pharaglow.features.straightenPharynx(im, xstart, xend, poptX, poptY, width, nPts=100)[source]
Based on a centerline, straighten the animal.
- Parameters
im (numpy.array or pims.Frame) – image of curved object
xstart (float) – start coordinate to apply to .features._pharynxFunc(x) to create a centerline
xend (float) – end coordinate to apply to .features._pharynxFunc(x) to create a centerline
poptX (array) – optimal fit parameters describing pharynx centerline.
poptY (array) – optimal fit parameters describing pharynx centerline.
width (int) – how many points to sample orthogonal of the centerline
nPts (int, optional) – how many points to sample along the centerline. Defaults to 100.
- Returns
(nPts, width) array of image intensity
- Return type
numpy.array
- pharaglow.features.thresholdPharynx(img)[source]
This function has been made lazy. When passed a Slicerator, it will return a Pipeline of the results. When passed any other objects, its behavior is unchanged.
Use Yen threshold to obtain mask of pharynx.
- Args:
im (numpy.array or pims.Frame): image
- Returns:
np.array: binary image with only the largest object
- pharaglow.features.widthPharynx(cl, contour, dCl)[source]
- Use vector interesections to get width of object.
We are looking for contour points that have the same(or very similar) angle relative to the centerline point as the normal vectors.
- Parameters
cl ([type]) – cl (N,2) array describing the centerline
contour ([type]) – (M,2) array describing the contour
dCl ([type]) – (N,2) array describing the normal vectors on the centerline (created by calling .features.normalVecCl(poptX, poptY, xs))
- Returns
(N,2) widths of the contour at each centerline point.
- Return type
numpy.array
pharaglow.io module
io.py: loading for pharaglow feature files.
- pharaglow.io.load(fname, image_depth=8, maxcols=10000, prefix='im', **kwargs)[source]
- load a pharglow features, trajectories or results file.
We expect columns containing the string ‘im’ to be image pixels which will convert to uint8.
- Parameters
fname (str) – filename of the .json file to load.
image_depth (int, optional) – bit depth of the images. Defaults to 8.
maxcols (int, optional) – maximal number of expected columns. Defaults to 10000.
prefix (str, optional) – prefix to add to the column. Defaults to “im”.
- Returns
a pharaglow file as dataframe
- Return type
pandas.DataFrame
- pharaglow.io.log_setup(name, level, fname)[source]
This function will setup a logger with the name and level you pass as input. Levels are 10 (debug), 20 (info), 30 (warning), 40 (error), 50 (critical).
- Parameters
name (str) – name of the logger object
level (int) – logging level {10,20,30,40,50}
fname (str) – filename for writing the log messages
- Returns
a logger
- Return type
logging.Logger
pharaglow.run module
run.py: run pharaglow analysis by inplace modifying pandas dataframes.
- pharaglow.run.parallel_pharaglow_run(args, **kwargs)[source]
Define a worker function for parallelization.
- Parameters
args – arguments for .features.runPharaglowOnImage()
- Returns
hands over output from .features.runPharaglowOnImage()
- Return type
pandas.DataFrame
- pharaglow.run.pharynxorientation(df)[source]
Get all images into the same orientation by comparing to a sample image.
- Parameters
df (pandas.DataFrame) – a pharaglow dataframe after running .run.runPharaglowOnImage()
- Returns
dataFrame with flipped columns where neccessary
- Return type
pandas.DataFrame
- pharaglow.run.runPharaglowCL(mask, ptsX, ptsY, length, **kwargs)[source]
Fit the centerline points and detect object morphology.
- Parameters
mask (list) – binary image, unraveled
ptsX (list) – coordinates of centerline along X
ptsY (list) – coordinates of centerline along Y
length (list) – length of one axis of the image
- Returns
poptX - optimal fit parameters of .features.pharynxFunc list: poptY - optimal fit parameters of .features.pharynxFunc float: xstart -start coordinate to apply to .features._pharynxFunc(x) to create a centerline float: xend - end coordinate to apply to .features._pharynxFunc(x) to create a centerline list: cl - (n,2) list of centerline coordinates in image space. list: dCl - (n,2) array of unit vectors orthogonal to centerline. Same length as cl. list: widths - (n,2) widths of the contour at each centerline point. list: contour- (m,2) coordinates along the contour of the object
- Return type
list
- pharaglow.run.runPharaglowImg(im, xstart, xend, poptX, poptY, width, npts)[source]
Obtain the straightened version and gradient of the input image.
- Parameters
im (numpy.array or pims.Frame) – image of curved object
xstart (float) – start coordinate to apply to .features._pharynxFunc(x) to create a centerline
xend (float) – end coordinate to apply to .features._pharynxFunc(x) to create a centerline
poptX (array) – optimal fit parameters describing pharynx centerline.
poptY (array) – optimal fit parameters describing pharynx centerline.
width (int) – how many points to sample orthogonal of the centerline
nPts (int, optional) – how many points to sample along the centerline. Defaults to 100.
- Returns
local derivative of image numpy.array: (nPts, width) array of image intensity straightened by centerline
- Return type
numpy.array
- pharaglow.run.runPharaglowKymo(im, cl, widths, **kwargs)[source]
Use the centerline to extract intensity along this line from an image.
- Parameters
im (numpy.array) – image of a pharynx
cl (numpy.array or list) – (n,2) list of centerline coordinates in image space.
kwargs – **kwargs are passed skimage.measure.profile_line.
- Returns
array of (?,) length. Length is determined by pathlength of centerline.
- Return type
numpy.array
- pharaglow.run.runPharaglowOnImage(image, framenumber, params, **kwargs)[source]
Run pharaglow-specific image analysis of a pharynx on a single image.
- Parameters
image (numpy.array or pims.Frame) – input image
framenumber (int) – frame number to indicate in the resulting
analyzed. (dataframe which image is being) –
arams (dict) – parameter dictionary containing image analysis parameters.
- Returns
collection of data created by pharaglow for this image.
- Return type
pandas.DataFrame
- pharaglow.run.runPharaglowSkel(im)[source]
Create a centerline of the object in the image by binarizing, skeletonizing and sorting centerline points.
- Parameters
im (numpy.array or pims.Frame) – image
- Returns
binary of image, unraveled list: coordinates of centerline along X list: coordinates of centerline along Y
- Return type
list
pharaglow.tracking module
tracking.py: Detection of worms and trackpy-based worm tracking.
- pharaglow.tracking.calculateMask(frames, bgWindow=30, thresholdWindow=30, subtract=False, smooth=0, tfactor=1, **kwargs)[source]
standard median stack-projection to obtain a background image followd by thresholding and filtering of small objects to get a clean mask.
- Parameters
frames (numpy.array or pims.ImageSequence) – image stack with input images
bgWindow (int) – subsample frames for background creation. Defaults to 30.
thresholdWindow (int, optional) – subsample frames to calculate the threshold. Use larger values if the objects are dense. Defaults to 30.
subtract (bool, optional) – calculate and subtract a median-background. Defaults to False.
smooth (int, optional) – size of gaussian filter for image smoothing. Defaults to 0.
tfactor (int, optional) – fudge factor to correct threshold. Discouraged. Defaults to 1.
- Returns
masked (binary) image array
- Return type
numpy.array
- pharaglow.tracking.cropImagesAroundCMS(img, x, y, lengthX, lengthY, size, refine=False)[source]
Using the interpolated center of mass coordindates (x,y), fill in missing images. img is a full size frame.
- Parameters
img (numpy.array) – original image
x (float) – x-coordinate
y (float) – y-coordinate
lengthX (int) – length of resulting image
lengthY (int) – length of resulting image
size (float) – expected minimal size for a relevant object
refine (bool, optional) – Use filtering to separate potentially colliding objects. Defaults to False.
- Returns
image unraveled as 1d list tuple: bounding box int: length of first image axis int: length of second image axis
- Return type
list
- pharaglow.tracking.extractImage(img, mask, length, cmsLocal)[source]
extracts a square image of an object centered around center of mass coordinates with size (length, length). Mask ensures that only one object is visible if two are in the same region. img is the bounding box region of the object.
- Parameters
img (numpy.array or pims.Frame) – larger image
mask (numpy.array) – binary mask of the same size as img
length (int) – length of resulting image
cmsLocal (float, float) – center point
- Returns
square cutout of (length,length) will be returned
- Return type
numpy.array
- pharaglow.tracking.extractImagePad(img, bbox, pad, mask=None)[source]
get a larger than bounding box image by padding around the detected object.
- Parameters
img (numpy.array) – input image
bbox (tuple) – bounding box which lies in img in format (ymin, xmin, ymax, xmax)
pad (int) – number of pixels to pad around each size. reslting image will be larger by 2*pad on each side.
mask (numpy.array, optional) – binary mask of size img. Defaults to None.
- Returns
padded image slice: location/bbox of padded image in original image
- Return type
numpy.array
- pharaglow.tracking.fillMissingImages(imgs, frame, x, y, lengthX, lengthY, size, refine=False)[source]
Run this on a dataframe to interpolate images from previously missing, now interpolated coordinates.
- Parameters
img (numpy.array) – original image
x (float) – x-coordinate
y (float) – y-coordinate
lengthX (int) – length of resulting image
lengthY (int) – length of resulting image
size (float) – expected minimal size for a relevant object
refine (bool, optional) – Use filtering to separate potentially colliding objects. Defaults to False.
- Returns
image unraveled as 1d list int: ymin of bounding box int: xmin of bounding box int: ymax of bounding box int: xmax of bounding box int: length of first image axis int: length of second image axis
- Return type
list
- pharaglow.tracking.getThreshold(img)[source]
This function has been made lazy. When passed a Slicerator, it will return a Pipeline of the results. When passed any other objects, its behavior is unchanged.
- “return a global threshold value for an image using yen’s method.
- Returns:
float: theshold value
- pharaglow.tracking.interpolateTrajectories(traj, columns=None)[source]
given a dataframe with a trajectory, interpolate missing frames. The interpolate function ignores non-pandas types, so some columns will not be interpolated.
- Parameters
traj (pandas.DataFrame) – pandas dataframe containing at minimum the columns ‘frame’ and the columns given in colums.
columns (list(str), optional) – list of columns to interpolate.
interpolated. (Defaults to None, which means all columns are attempted to be) –
- Returns
dataframe with interpolated trajectories
- Return type
pandas.DataFrame
- pharaglow.tracking.interpolate_helper(rawframes, ims, tmp, param, columns=['x', 'y', 'shapeX', 'shapeY', 'particle'])[source]
wrapper to make the code more readable. This interpolates all missing images in a trajectory. check if currently the image is all zeros - then we insert an small image from the original movie around the interpolated coordinates.
- Parameters
rawframes (pims.ImageSequence) – sequence of images
ims (numpy.array) – stack of small images around detected objects corresponding to rows in tmp
tmp (pandas.DataFrame) – pandas dataframe with an onject and its properties per row
param (dict) – dictionary of image analysis parameters, see example file AnalysisParameters_1x.json
columns (list, optional) – columns to interpolate. Defaults to [‘x’, ‘y’, ‘shapeX’, ‘shapeY’, ‘particle’].
- Returns
interpolated version of tmp with missing values interpolated numpy.array: array of images with interpolated images inserted at the appropriate indices
- Return type
pandas.DataFrame
- pharaglow.tracking.linkParticles(df, searchRange, minimalDuration, **kwargs)[source]
Link detected particles into trajectories. **kwargs can be passed to the trackpy function link_df to modify tracking behavior.
- Parameters
df (pandas.DataFrame) – pandas dataframe that contains at least the columns ‘frame’ and ‘x’, ‘y’.
searchRange (float) – how far particles can move in one frame
minimalDuration (int) – minimal duration of a track in frames
- Returns
inplace modified dataframe with an added column called ‘particles’ which labels the objects belonging to one trajectory.
- Return type
pandas.DataFrame
- pharaglow.tracking.objectDetection(mask, img, frame, params)[source]
- label a binary image and extract a region of interest around each labelled object,
as well as collect properties of the object in a DataFrame.
- Parameters
mask (numpy.array) – binary image
img (numpy.array) – intensity image with same shape as mask
frame (int) – a number to indicate a time stamp, which will populate the column ‘frame’
params (dict) – parameter dictionary containing image analysis parameters.
- Returns
dataframe with information for each image, list of corresponding images.
- Return type
pandas.Dataframe, list
- pharaglow.tracking.parallelWorker(args, **kwargs)[source]
helper wrapper to run object detection with multiprocessing.
- Parameters
args – arguments for .tracking.objectDetection
- Returns
dataframe with information for each image list: list of corresponding images.
- Return type
pandas.DataFrame
- pharaglow.tracking.parallel_imageanalysis(frames, masks, param, framenumbers=None, parallelWorker=<function parallelWorker>, nWorkers=5, output=None)[source]
use multiptocessing to speed up image analysis. This is inspired by the trackpy.batch function.
frames: numpy.array or other iterable of images masks: the binary of the frames, same length param: parameters given to all jobs
- output{None, trackpy.PandasHDFStore, SomeCustomClass}
If None, return all results as one big DataFrame. Otherwise, pass results from each frame, one at a time, to the put() method of whatever class is specified here.
- pharaglow.tracking.preprocess(img, threshold=None, smooth=0, dilate=False)[source]
This function has been made lazy. When passed a Slicerator, it will return a Pipeline of the results. When passed any other objects, its behavior is unchanged.
Apply image processing functions to return a binary image.
- Args:
img (numpy.array or pims.Frame): input image smooth (int): apply a gaussian filter to img with width=smooth threshold (float): threshold value to apply after smoothing (default: None) dilate (int): apply a binary dilation n = dilate times (default = False)
- Returns:
numpy.array: binary (masked) image
- pharaglow.tracking.refineWatershed(img, min_size, filter_sizes=[3, 4, 5])[source]
This function has been made lazy. When passed a Slicerator, it will return a Pipeline of the results. When passed any other objects, its behavior is unchanged.
- “Refine segmentation using thresholding with different filtered images.
Favors detection of two objects. Args:
img (numpy.array or pims.Frame): input image min_size (int, float): minimal size of objects to retain as labels filter_sizes (list, optional): filter sizes to try until objects are separated. Defaults to [3,4,5].
- Returns:
numpy.array : labelled image
- pharaglow.tracking.subtractBG(img, bg)[source]
This function has been made lazy. When passed a Slicerator, it will return a Pipeline of the results. When passed any other objects, its behavior is unchanged.
Subtract a background from the image.
- Args:
img (numpy.array or pims.Frame): input image bg (numpy.array or pims.Frame): second image with background
- Returns:
numpy.array: background subtracted image
pharaglow.util module
util.py: useful general functions like filters and peak detection.
- pharaglow.util.pad_images(im, shape, size, reshape=True, depth='uint8')[source]
pad image to desired size.
- Parameters
im (list) – a linearized version of an image
shape (int) – shape of second axis of image.
size (int) – pad image to size (size, size)
reshape (bool, optional) – reshape image to (-1, shape) before padding. Defaults to True.
depth (str, optional) – bit depth of image. Defaults to ‘uint8’.
- Returns
padded image of size (size, size)
- Return type
numpy.array
- pharaglow.util.parallel_analysis(args, param, parallelWorker, framenumbers=None, nWorkers=5, output=None, depth='uint8', **kwargs)[source]
Use multiprocessing to speed up image analysis. This is inspired by the trackpy.batch function.
- Parameters
args (tuple) – contains iterables eg. (frames, masks) or just frames that will be iterated through.
param (dict) – image analysis parameters
parallelWorker (func) – a function defining what should be done with args
framenumbers (list, optional) – a list of frame numbers corresponding to the frames in args. Defaults to None.
nWorkers (int, optional) – Processes to use, if 1 will run without multiprocessing. Defaults to 5.
output ([type], optional) – {None, trackpy.PandasHDFStore, SomeCustomClass} a storage class e.g. trackpy.PandasHDFStore. Defaults to None.
depth (str, optional) – bit depth of frames. Defaults to ‘uint8’.
- Returns
output or (pandas.DataFrame, numpy.array)
- pharaglow.util.smooth(x, window_len=11, window='hanning')[source]
smooth the data using a window with requested size.
This method is based on the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are minimized in the begining and end part of the output signal. import warnings input:
x: the input signal window_len: the dimension of the smoothing window; should be an odd integer window: the type of window from ‘flat’, ‘hanning’, ‘hamming’, ‘bartlett’, ‘blackman’
flat window will produce a moving average smoothing.
- output:
the smoothed signal
example:
t=linspace(-2,2,0.1) x=sin(t)+randn(len(t))*0.1 y=smooth(x)
see also:
numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve scipy.signal.lfilter
TODO: the window parameter could be the window itself if an array instead of a string NOTE: length(output) != length(input), to correct this: return y[(window_len/2-1):-(window_len/2)] instead of just y.