#!/usr/bin/env python
"""run.py: run pharaglow analysis by inplace modifying pandas dataframes."""
import numpy as np
from skimage.io import imread
import pandas as pd
import pharaglow.features as pg
from . import util as pgu
[docs]def runPharaglowSkel(im):
""" Create a centerline of the object in the image by binarizing,
skeletonizing and sorting centerline points.
Args:
im (numpy.array or pims.Frame): image
Returns:
list: binary of image, unraveled
list: coordinates of centerline along X
list: coordinates of centerline along Y
"""
mask = pg.thresholdPharynx(im)
skel = pg.skeletonPharynx(mask)
# if the image is empty or nearly empty
if np.sum(mask) == 0 or np.sum(skel)<6:
return mask.ravel(), np.nan, np.nan
order = pg.sortSkeleton(skel)
ptsX, ptsY = np.where(skel)
ptsX, ptsY = ptsX[order], ptsY[order]
return mask.ravel(), ptsX, ptsY
[docs]def runPharaglowCL(mask, ptsX, ptsY, length, **kwargs):
""" Fit the centerline points and detect object morphology.
Args:
mask (list): binary image, unraveled
ptsX (list): coordinates of centerline along X
ptsY (list): coordinates of centerline along Y
length (list): length of one axis of the image
Returns:
list: poptX - optimal fit parameters of .features.pharynxFunc
list: poptY - optimal fit parameters of .features.pharynxFunc
float: xstart -start coordinate to apply to .features._pharynxFunc(x) to create a centerline
float: xend - end coordinate to apply to .features._pharynxFunc(x) to create a centerline
list: cl - (n,2) list of centerline coordinates in image space.
list: dCl - (n,2) array of unit vectors orthogonal to centerline. Same length as cl.
list: widths - (n,2) widths of the contour at each centerline point.
list: contour- (m,2) coordinates along the contour of the object
"""
# mask reshaping from linear
mask = pgu.unravelImages(mask, length)
# getting centerline and widths along midline
poptX, poptY = pg.fitSkeleton(ptsX, ptsY)
scale= kwargs.pop('scale', 4)
contour = pg.morphologicalPharynxContour(mask, scale)
xstart, xend = pg.cropcenterline(poptX, poptY, contour)
# create uniform spacing along line
xs = np.linspace(xstart, xend, 100)
cl = pg.centerline(poptX, poptY, xs)
dCl = pg.normalVecCl(poptX, poptY, xs)
widths = pg.widthPharynx(cl, contour, dCl)
if (np.argmax(pg.scalarWidth(widths)) - 0.5*len(widths)) <= 0:
xtmp = xstart
xstart = xend
xend = xtmp
cl = cl[::-1]
dCl = dCl[::-1]
widths = widths[::-1]
return poptX, poptY, xstart, xend, cl, dCl, widths, contour
[docs]def runPharaglowKymo(im, cl, widths, **kwargs):
""" Use the centerline to extract intensity along this line from an image.
Args:
im (numpy.array): image of a pharynx
cl (numpy.array or list): (n,2) list of centerline coordinates in image space.
kwargs: **kwargs are passed skimage.measure.profile_line.
Returns:
numpy.array: array of (?,) length. Length is determined by pathlength of centerline.
"""
#kymoWeighted = pg.intensityAlongCenterline(im, cl, width = pg.scalarWidth(widths))[:,0]
return [pg.intensityAlongCenterline(im, cl, **kwargs)]
[docs]def runPharaglowImg(im, xstart, xend, poptX, poptY, width, npts):
""" Obtain the straightened version and gradient of the input image.
Args:
im (numpy.array or pims.Frame): image of curved object
xstart (float): start coordinate to apply to .features._pharynxFunc(x) to
create a centerline
xend (float): end coordinate to apply to .features._pharynxFunc(x)
to create a centerline
poptX (array): optimal fit parameters describing pharynx centerline.
poptY (array): optimal fit parameters describing pharynx centerline.
width (int): how many points to sample orthogonal of the centerline
nPts (int, optional): how many points to sample along the centerline. Defaults to 100.
Returns:
numpy.array: local derivative of image
numpy.array: (nPts, width) array of image intensity straightened by centerline
"""
#local derivative, can enhance contrast
gradientImage = pg.gradientPharynx(im)
# straightened image
straightIm = pg.straightenPharynx(im, xstart, xend, poptX, poptY, width=width, nPts = npts)
return gradientImage, straightIm
[docs]def pharynxorientation(df):
""" Get all images into the same orientation by comparing to a sample image.
Args:
df (pandas.DataFrame): a pharaglow dataframe after running .run.runPharaglowOnImage()
Returns:
pandas.DataFrame: dataFrame with flipped columns where neccessary
"""
df.loc[:,'StraightKymo'] = df.apply(
lambda row: np.mean(row['Straightened'], axis = 1), axis=1)
df['Similarity'] = False
sample = df['StraightKymo'].mean()
# let's make sure the sample is anterior to posterior
if np.mean(sample[:len(sample//2)])>np.mean(sample[len(sample//2):]):
sample = sample[::-1]
# this uses the intenisty profile - sometimes goes wrong
df['Similarity'] = df.apply(\
lambda row: np.sum((row['StraightKymo']-sample)**2)<\
np.sum((row['StraightKymo']-sample[::-1])**2), axis=1)
# now flip the orientation where the sample is upside down
for key in ['SkeletonX', 'SkeletonY', 'Centerline', 'dCl', 'Widths', 'Kymo',\
'StraightKymo', 'Straightened', 'KymoGrad']:
if key in df.columns:
df[key] = df.apply(lambda row: row[key] if row['Similarity'] \
else row[key][::-1], axis=1)
# Flip the start coordinates
if set(['Xstart', 'Xend']).issubset(df.columns):
df['Xtmp'] = df['Xstart']
df['Xstart'] = df.apply(lambda row: row['Xstart'] if \
row['Similarity'] else row['Xend'], axis=1)
df['Xend'] = df.apply(lambda row: row['Xend'] if row['Similarity'] else row['Xtmp'], axis=1)
return df
[docs]def runPharaglowOnImage(image, framenumber, params, **kwargs):
""" Run pharaglow-specific image analysis of a pharynx on a single image.
Args:
image (numpy.array or pims.Frame): input image
framenumber (int): frame number to indicate in the resulting
dataframe which image is being analyzed.
arams (dict): parameter dictionary containing image analysis parameters.
Returns:
pandas.DataFrame: collection of data created by pharaglow for this image.
"""
if 'run_all' in kwargs.keys():
run_all = kwargs['run_all']
else:
run_all = False
colnames = ['Mask', 'SkeletonX', 'SkeletonY','ParX', 'ParY', 'Xstart',\
'Xend', 'Centerline', 'dCl', 'Widths', \
'Contour','Gradient', 'Straightened', 'Kymo', 'KymoGrad']
# skeletonize
mask, skelX, skelY = runPharaglowSkel(image)
if np.sum(mask) == 0 or np.any(np.isnan(skelX)) or np.any(np.isnan(skelY)):
results = np.ones(len(colnames))*np.nan
else:
#centerline fit
scale = params.pop('scale', 4)
parX, parY, xstart, xend, cl, dCl, widths, contour = \
runPharaglowCL(mask,skelX, skelY, params['length'], scale = scale)
# image transformation operations
grad, straightened = runPharaglowImg(image, xstart,xend,\
parX, parY, params['widthStraight'],\
params['nPts'])
results = [mask, skelX, skelY, parX, parY, xstart, xend,\
cl, dCl, widths, contour, grad, straightened]
if run_all:
# run kymographs
kymo= runPharaglowKymo(image, cl, widths, linewidth = params['linewidth'])
# run kymographs
kymograd = runPharaglowKymo(grad, cl, widths, linewidth = params['linewidth'])
results.append(kymo, kymograd)
data = {}
for col, res in zip(colnames,results):
data[col] = res
df = pd.DataFrame([data], dtype = 'object')
df['frame'] = framenumber
#print('Done', framenumber)
return df,
[docs]def parallel_pharaglow_run(args, **kwargs):
""" Define a worker function for parallelization.
Args:
args (div.): arguments for .features.runPharaglowOnImage()
Returns:
pandas.DataFrame: hands over output from .features.runPharaglowOnImage()
"""
return runPharaglowOnImage(*args, **kwargs)